
Intelligence
Journal of

Article

Same Test, Better Scores: Boosting the Reliability of
Short Online Intelligence Recruitment Tests with
Nested Logit Item Response Theory Models

Martin Storme 1 ,2,*,† , Nils Myszkowski 3,† , Simon Baron 4 and David Bernard 4

1 IESEG School of Management, 59800 Lille, France
2 LEM-CNRS 9221, 59800 Lille, France
3 Department of Psychology, Pace University, New York, NY 10038, USA
4 Assess First, 75000 Paris, France
* Correspondence: m.storme@ieseg.fr; Tel.: +33-320-54-20-44
† These authors contributed equally to this work.

Received: 29 April 2019; Accepted: 5 July 2019; Published: 10 July 2019
����������
�������

Abstract: Assessing job applicants’ general mental ability online poses psychometric challenges due
to the necessity of having brief but accurate tests. Recent research (Myszkowski & Storme, 2018)
suggests that recovering distractor information through Nested Logit Models (NLM; Suh & Bolt, 2010)
increases the reliability of ability estimates in reasoning matrix-type tests. In the present research,
we extended this result to a different context (online intelligence testing for recruitment) and in
a larger sample (N = 2949 job applicants). We found that the NLMs outperformed the Nominal
Response Model (Bock, 1970) and provided significant reliability gains compared with their binary
logistic counterparts. In line with previous research, the gain in reliability was especially obtained at
low ability levels. Implications and practical recommendations are discussed.

Keywords: E-assessment; general mental ability; nested logit models; item-response theory;
ability-based guessing

1. Introduction

With the development of the Internet, the assessment of job applicants is increasingly performed
online, which facilitates large scale testing while reducing costs [1,2]. This recent trend has led to
the creation of a new research field in psychometrics, referred to as e-assessment [2]. Considering the
relevance of General Mental Ability (GMA) in predicting job performance [3], many e-assessment
platforms have included tasks that aim at capturing it—such as logical series or logical reasoning
matrices—in their online test batteries.

The assessment phase in e-recruiting poses very specific psychometric challenges. On the one
hand, the assessment should ideally lead to a short-list of the best applicants [1,2]. The accuracy of
the assessment is therefore a key issue in e-recruiting just like in it is in recruiting in general. On the
other hand, the assessment phase cannot require from applicants that they take part in assessment
processes that are too time consuming and too cognitively demanding. It is indeed not acceptable to
extensively test people who have a relatively low chance of getting an interview. Perceived unfairness
of the recruitment process has been shown to have a negative impact on the image of the recruiting
company, which can lead to negative word of mouth and/or intentions not to complete the recruitment
process [4,5]. The challenge that is inherent to e-assessment in a recruitment context is essentially the
challenge of short psychometric measures, which is to extract as much information as possible from
short instruments.
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Extracting reliable information from short tests remains a real challenge from a measurement
perspective [6]. Hopefully, psychometricians have allies in this challenging endeavour, such as Item
Response Theory (IRT) modeling, which often allows them to extract more information from short
psychometric tools than Classical Test Theory (CTT). Originally suggested for multiple-choice items by
Bock [7], one way that researchers can take advantage of the IRT framework in logical series or matrices
tests consists in extracting information from which incorrect responses were selected. This approach
is based on the premise that when a test taker selects a wrong response option out of a set of wrong
response options, the choice of the wrong response option can carry information about the ability of the
test taker. Further, recent developments [8] applied to progressive matrices have suggested recovering
additional information from distractor responses through Nested Logit Models (NLM) [9], and have
indicated that such models may be more appropriate than Bock’s [7] Nominal Response Model in
logical reasoning tests, but also than traditional binary IRT models [8]. In this research, recovering
information from the choice of distractors has provided significant gains in reliability in comparison
with not recovering such information and using traditional binary logistic models.

Currently, no study has investigated whether applying this approach in the field of recruitment
would lead to gains in reliability. Yet, taking an online GMA test as part of a recruitment process is
in several ways different from taking a GMA test for an experiment in the lab. There is reasonable
evidence to suspect that such differences could affect the way distractors are processed by test takers,
which could possibly jeopardize the very idea of recovering psychometric information from distractors.
In the present article, our main aim is to extend and conceptually replicate previous research on
students and in laboratory conditions [8] to online personnel pre-selection contexts, by testing whether
the modeling strategies previously suggested are able, even in this context, to provide tangible gains in
reliability. The effort of conducting conceptual replications in the field is crucial in psychology to rule
out the possibility that a laboratory finding is too weak to be relevant in contexts that are less tightly
controlled [10].

1.1. Binary Item Response Theory Models

Item Response Theory (IRT) has traditionally helped psychometricians improve the reliability
of the ability estimates obtained with short intelligence measures [8,11]. IRT provides a framework
that has indeed been shown to improve the reliability of measurement compared to the Classical Test
Theory (CTT) approach [12]. While CTT assumes that all items are linked to the latent trait in a similar
fashion, IRT assumes that each item is linked to the the latent trait in a unique manner [13]. The aim of
IRT is to model the probability of a response to an item as a function of the latent trait or ability of the
test taker, traditionally with a non-linear function of the latent trait that is unique for each item. In the
case of binary responses, the non-linear function is, frequently, the logistic function. Because of the
flexibility of its parametrization in comparison with CTT, IRT allows for the accounting of a variety of
testing phenomena and extracting information that is relevant in the context of GMA assessment [8].

GMA tests, such as progressive matrices or logical series, usually contain one correct answer
option and several incorrect answer options—which are often referred to as distractors. Although the
response dataset is thus polytomous, it is typical to recode the dataset by collapsing the distractor
responses together, which yields a dichotomous success/failure variable format. The binary IRT
approach generally consists in modeling these dichotomous responses using a logistic function of
the latent ability and a set of item parameters representing various item characteristics (difficulty,
discrimination, etc.).

The simplest IRT models, including only one parameter and referred to as One-Parameter
Logistic (1PL) models, characterize items by their level of difficulty only. The difficulty parameter
corresponds to the level of the latent trait for which the slope of the function linking the ability and the
probability to select the correct response option reaches its maximum—in other words, the ability level
where the discrimination of the item is at its maximum. The model is often extended with another
parameter—discrimination—leading to Two-Parameter Logistic (2PL) models. Such models not only
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take into account the difficulty of an item, but also its ability to discriminate between ability levels.
The discrimination parameter corresponds to the strength of relationship between the ability and
the probability to select the correct response option. Three-Parameter Logistic (3PL) models add to
previous models a variable lower asymptote in the relation between the ability and the probability
to select the correct response option. In the context of IRT, the lower asymptote corresponds to the
probability to select the correct answer to a given item by guessing it. Therefore, 3PL models allow
to characterize items regarding the extent to which they are susceptible to correct guessing. A fourth
parameter is included in 4-Parameter Logistic (4PL) models, which corresponds to a variable upper
asymptote in the relation between the ability and the probability to select the correct response option.
In the context of IRT, the upper asymptote corresponds to the probability of responding incorrectly to
an item in spite of having a level of ability that should normally lead to providing the right answer.
This parameter allows the modelling of the phenomenon of inattention or slipping. Although 4PL
models are used less frequently than 1, 2, and 3PL models, they have been shown to correct adequately
for careless mistakes and to improve measurement efficiency [14,15].

Although binary IRT is able to model phenomena that appear in matrix-type reasoning tasks,
even models that include guessing fail to account for the possibility that choosing a distractor
over another one could be related to the respondent’s ability—a phenomenon often described as
as ability-based guessing [16]. Indeed, the lower asymptote parameter of the 3PL and 4PL models
account for the probability of correctly guessing, but what distractor is chosen when an examinee
uses a guessing strategy is not considered—all distractor responses are still collapsed together as
incorrect. Yet, if one considers that the guessing process is related to the ability, then the outcome of
this process—the distractor chosen—can contain information about the ability that binary models fail
to recover.

1.2. Recovering Distractor Information

In matrix-type or logical series type tests, distractors are usually designed in a way that they are
only partially in line with the set of rules that structures the logical series. For example, if three rules
are structuring the progression of a logical series, the correct response option will respect all three of
them, but frequently a distractor could respect only two, while another may respect one or even none
of them. In this example, a distractor that respects two out of three rules could be considered as a better
response option than a distractor that would only respect one out of three rules, although both are
ultimately incorrect response options. As a consequence, the wrong response options that are selected
by test takers are usually not equivalent in (in)correctness, and thus could carry information about
their ability [17].

1.2.1. The Nominal Response Model

A traditional approach to recovering information from distractors is to fit the nominal data with
Bock’s [7] Nominal Response Model (NRM). This model is essentially a multinomial adaptation of the
2PL model, where the probability Piv that an examinee j chooses a category v—which could be the
correct response or a distractor—among the mi possible responses for item i is modeled as a function of
the examinee’s ability θj, an intercept item-category parameter ζiv and a slope item-category parameter
λiv, as well as the item-category parameters of all other categories, such as:

Piv
(
θj
)
=

eζiv+λivθj

∑mi
k=1 eζik+λikθj

(1)

A way to interpret this model is to essentially consider each category as having a propensity
eζiv+λivθj and the probability of selecting a category depends on the category’s propensity over the total
of all category propensities. When applied to multiple choice items, a consequence of this is that the
Nominal Response Model’s formulation is mathematically consistent with a response process where
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all response categories compete with one another and where, depending on the examinee’s ability,
one category would dominate in propensity the others, and result in the examinee responding (more
probably) in favor of that category [9]. But, as we later discuss, this representation of the response
process may not be in line with all multiple-choice tests, especially in the case of logical reasoning
matrices or logical series.

1.2.2. Nested Logit Models

In certain multiple-choice tests, in order to respond, the examinee is supposed to consider a
stimulus (for example, in matrix-type tests, the incomplete matrix), from which a rule should be
extracted and used to find the completing element. In such cases, it can be questioned whether
examinees put into competition the different response options right away—a process that would
ideally be modeled by the NRM. Instead, it could be that they first focus on understanding the
stimulus (the matrix, or the beginning of the series) to find the correct response (regardless of what the
response options are). From that process, two situations may arise—either they have understood the
rule correctly and found the correct response—in that case, the distractors are not really considered as
viable options and the correct response is selected—or they have not—and in that case the response
options are put in competition in the guessing strategy.

Such a sequential process was described by Suh and Bolt [9] as a motivation to develop a new class
of item-response models for multiple-choice questions where this double process could be considered:
Nested Logit Models (NLM). NLMs have been designed to model situations in which the response
choice possesses a nested structure, that is when the final choice of a response option is made through
a sequential process.

NLMs attempt to approximate the response probabilities that occur from this sequential process
and the two models that best describe each step into a single model. NLMs have two levels that
separate the response options in two nests. At a higher level (level 1), the model distinguishes the
choice of the correct response option versus the choice of any incorrect response option, which can be
achieved with a binary logistic IRT model (e.g. the 2PL, 3PL or 4PL model). At a lower level (level 2),
the model distinguishes the probability of selecting one particular distractor (as opposed to another
one) as the product of the probability of selecting any distractor (which is the complement of the
probability earlier modeled with the level 1 part) and a probability modeled using the propensities of
each distractor—which is similar to a Nominal Response Model of the distractors.

To summarize, using the 4-Parameter NLM (4PNL) as an example for at level 1, the probability
P(xij = u|θj) that the jth person selects the correct response (category u) to the ith item, depends
on their ability θj and item parameters αi (discrimination/slope), βi (difficulty/intercept), γi (lower
asymptote) and δi (upper asymptote), such as:

P(xij = u|θj) = γi +
δi − γi

1 + e−(βi+αiθj)
(2)

Similar to binary logistic models, the 3-Parameter Nested Logit (3PNL) model is a constrained
4PNL where δi is fixed, generally (and throughout in this paper) to 1, such as:

P(xij = u|θj) = γi +
1− γi

1 + e−(βi+αiθj)
(3)

Further, the 2-Parameter Nested Logit (2PNL) is a constrained 3PNL where γi is fixed, generally
(and throughout in this paper) to 0, such as:

P(xij = u|θj) =
1

1 + e−(βi+αiθj)
(4)
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At level 2, which models the distractor responses, the probability P(xij = v|θj) that the examinee
selects the distractor category v among the mi possible distractor responses is modeled as the product
of the probability of responding incorrectly 1− P(xij = u|θj) and the probability that the examinee
selects the distractor conditional upon an incorrect response. The latter is in fact similar to a Nominal
Response model, where distractor responses have propensities that are a function of the ability θj,
intercept ζiv and slope λiv. The resulting distractor model for the probability P

(
Uij = 0, Dijv|θj

)
that

person j selects distractor v for item i is thus given by:

P(xij = v|θj) =
[
1− P(xij = u|θj)

] [ eζiv+λivθj

∑mi
k=1 eξik+λikθj

]
(5)

Using the level 1 4PL model in Equation (2), the distractors-model results in the 4PNL model to:

P(xij = v|θj) =

[
1−

(
γi +

δi − γi

1 + e−(βi+αiθj)

)] [ eζiv+λivθj

∑mi
k=1 eξik+λikθj

]
(6)

Using the level 1 3PL model in Equation (3), the distractors-model results in the 3PNL model to:

P(xij = v|θj) =

[
1−

(
γi +

1− γi

1 + e−(βi+αiθj)

)] [ eζiv+λivθj

∑mi
k=1 eξik+λikθj

]
(7)

Using the level 1 2PL model in Equation (4), the distractors-model results in the 2PNL model to:

P(xij = v|θj) =

[
1− 1

1 + e−(βi+αiθj)

] [
eζiv+λivθj

∑mi
k=1 eξik+λikθj

]
(8)

An important distinction to note between the models of this class and the Nominal Response
Model is that, in the NLM, the probability of a correct response is not directly affected by the
propensities towards the different distractors, but the probability to select the distractors is conditional
upon the probability of a correct (or rather, incorrect) response. In contrast, in the Nominal Response
Model, the propensities towards all response categories—correct response and distractors alike—all
affect one another.

To illustrate NLM, we present in Figure 1 the item-category characteristic curves for an item of
the test studied in this very paper.
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Figure 1. An example item of the GF20 (top) and the associated category characteristic curves as
estimated by the 3-Parameter Nested Logit model (bottom). The correct response (4) is increasingly
probable as θj increases. However, the response category 3—which is the only distractor response
where the blue and the yellow squares are (correctly) not adjacent—would be more probably selected
by individuals with low abilities (θj ≈ −2.7), while the category 1 would be more probably selected
by individuals with even lower abilities (θj < −3)—thus showing that the choice of distractor may be
informative of θj.

1.3. The Aim of This Study

Although originally, Nominal Response Models were considered as a way to recover information
from multiple-choice tests, recent research suggests that, in the case of matrix or series-type GMA tests,
NLM may better fit the norminal-level data than the NRM and provide significant reliability gains
in comparison with binary logistic models. In particular, Myszkowski and Storme [8] have shown
that, on the last series of the Standard Progressive Matrices [18], (1) using NLM provided a better fit
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than Nominal Response Models to the nominal level data, and (2) NLMs allowed significant reliability
gains when estimating ability.

Yet, however promising, this result has only been observed with one GMA test and has only
been used on a convenience sample of undergraduates, in a low-stakes situation. This study aims at
bridging this gap by replicating this result on another short GMA test, with higher stakes, and in a
context that would be particularly interested in these reliability gains: Online recruitment.

The conditions under which job applicants take GMA tests are indeed very different from the
conditions in which research participants take similar tests in the lab as part of a typical research study.
For example, in a recruitment context, the stakes are higher in comparison with taking the test in a lab.
Previous research on the effect of pressure on cognitive processes when taking intelligence tests has
shown that when under pressure, working memory is busy processing intrusive thoughts which can
have in turn a negative impact on performance [19,20]. It is possible that this phenomenon also affects
the way distractors are processed and lead to different processing of response options. When under
pressure, test takers who fail at identifying the rule that structures the progression of the series might
experience high levels of stress and fail at comparing efficiently distractors to identify the best of the
incorrect response options. As a consequence, in the context of the online assessment of job applicants,
the choice of distractors might carry little information about the ability of test takers. If this is the case,
NLMs should not lead in this context to gains in empirical reliability compared with binary models.

Furthermore, the fact that job applicants usually take online tests in their own time leads to
less standardized testing contexts. Compared with the relatively controlled and quiet conditions
of a lab, there might be more attentional perturbations in the environment, which might induce a
shallower processing of the wrong response options. Consequently, it is possible that in the context of
e-assessment, the choice of distractors is not so much reflective of the ability of the test taker, which
could hinder the potential gains from NLMs.

The aim of the present study is to test whether the findings of Myszkowski and Storme [8]—obtained
in a low psychological pressure and controlled context—can be replicated and generalized to an
assessment situation characterized by more psychological pressure and less standardization, as well as
a different test.

2. Method

2.1. Participants and Procedure

The sample consisted of 2949 French job applicants (2084 Men, 865 Women, Mage = 36.88,
SDage = 8.66) who responded to a logical series test that aims at measuring GMA online. The examinees
responded using an e-assessment application presented in their web browser. As it is common in
e-assessment, it can be expected that the standardization regarding when and where the test was taken
was relatively low as job applicants were free to take the test at the time and at the place that was
the most convenient for them. Of the participants, 40.96% had a master (or higher) degree, 23.64% of
participants had a bachelor degree, the remaining applicants had less than a bachelor degree.

2.2. Instrument

The test under investigation—the GF20—comprises 20 incomplete logical series presented each
with six response options to complete the missing part, including one correct answer that can be
deducted from the application of logical rules. Each logical series consists of a 4 by 1 matrix with
colored cells moving progressively on a grid according to simple geometric rules—such as translations
and rotations. The 20 items that are comprised in the final test were designed and pre-tested to
discriminate different levels of ability. An item example is provided in Figure 1. Except for instructions
participants to complete the series, the test only included non-verbal and non-numerical content.
No time limit was provided to applicants to take the test. It took them on average 21.30 min to
complete the 20 items (SD = 9.78). Items were presented one by one. Participants were instructed to
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provide an response to each item before they could move on to the next item, and were not able to
go back.

The CTT-based reliability estimates—computed using the R package “semtools” [21] from a
unidimensional model fit with the package “lavaan” [22]—of the GF20 were satisfactory, as Cronbach’s
α was 0.831, Raykov’s ω congeneric reliability was 0.834 and McDonald’s ωh reliability was 0.822.

2.3. Binary IRT Modeling

2.3.1. Model Estimation

All binary IRT models—the 1-Parameter Logistic (1PL), 2-Parameter Logistic (2PL), 3-Parameter
Logistic with free lower asymptote (3PL), and 4-parameter logistic (4PL) models—were estimated using
an Expectation-Maximization (EM) algorithm with the R package “mirt” [23]. All models successfully
converged. Nevertheless, the information matrix of the 4PL model could not be inverted in order
to compute the parameter standard errors—decreasing the convergence tolerance and changing the
estimation method did not solve this issue—which may be a sign that the estimates were unstable.
Item characteristic curve plots, which, for binary models, present the expected probability of a correct
response as a function of the latent ability θj were plotted using the package for R “jrt” [24]. To keep
the paper concise, only models with appropriate fit were plotted.

2.3.2. Model Fit

The fit of the models were then compared on Likelihood Ratio Tests (LRT) the model’s corrected
Akaike Information Criterion (AICc). For the former, p values below 0.05 were used to indicate a
significantly improved fit from using the more complex (least constrained) model as opposed to
the least complex (most constrained) model. For the latter, a smaller AICc indicates a better (more
parsimonious) model fit.

In addition, absolute model fit indices were obtained by using limited information Goodness-of-Fit
statistics [25] as implemented in “mirt.” As usual—although more frequently seen in Structural
Equation Modeling—and similar to the original study of Myszkowski and Storme [8], we used
as absolute model fit indices the Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI),
with thresholds of 0.95, along with the Standardized Root Mean Square Residual (SRMR) with a
threshold of 0.08, and the Root Mean Square Error of Approximation (RMSEA) with a threshold of 0.06.

2.3.3. Reliability

Since the aim of this paper is to extend and replicate the finding that NLM provides an
increase in measurement accuracy in logical GMA tests—as found with the Raven’s progressive
matrices [8]—quantifying measurement accuracy is key. Measurement accuracy is represented by
several statistics in IRT, especially information, standard error of measurement and reliability, which
are mathematical transformations of one another. Because reliability is a familiar metric for most
researchers—in both CTT and IRT—is conveniently bounded by 0 and 1, and is the metric chosen
in the article that this study attempts to replicate, it was chosen in this study. However, it should
be noted that the conclusions reached about reliability here are also extendable to information and
standard errors.

Similar to the original study, reliability functions were plotted for the 2PL, 3PL and 4PL models,
overlayed with their Nested Logit counterparts. In addition, and also similar to the original study,
marginal estimates of empirical reliability were computed [26]. The estimate of empirical reliability
reported corresponds to the reliability of the θj scores, averaged across all cases j.
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2.4. Nominal and Nested Logit IRT Models

2.4.1. Model Estimation

The models for nominal data—the Nominal Response (NR), the 2-Parameter Nested Logit
(2PNL), the 3-Parameter Nested Logit (3PNL) an the 4-Parameter Nested Logit (4PNL) models—were
estimated using the package “mirt” [23] using an EM algorithm. All models converged successfully.
However, as with the binary models, the information matrix of the 4PNL model could not be inverted in
order to compute the parameter standard errors, which may be a sign that the estimates were unstable.
As for the binary models, item category curve plots, which present the expected probability of selecting
a category as a function of the latent ability θj were computed using “jrt” [24]. Again, to keep the paper
concise, only models with appropriate fit were reported.

2.4.2. Model Fit

Similar to the binary models, Likelihood Ratio Tests were used to compare the different nominal
models. However, only the 2PNL, 3PNL and 4PNL models are nested with one another, and thus only
they allow the use of Likelihood Ratio Tests when comparing them. The AICcs of all models were
computed, and the AICc was used to compare the Nominal Response model with the other models.

Polytomous models are largely more heavily parametrized than binary models, which, in some
cases, prevents to compute limited information Goodness-of-Fit statistics, such as in Myszkowski and
Storme [8]—thereby limiting model fit estimations. However, in this case, because of the larger sample
size than in Myszkowski and Storme [8], we were able to compute them, and used the same indices
and thresholds earlier discussed for the binary models.

2.4.3. Reliability

Similar to the binary models, we also computed the reliability functions of the NLMs, which were
plotted as an overlay of the reliability functions of their respective binary counterparts (i.e., 2PL and
2PNL, 3PL and 3PLN, 4PL and 4PLN)—thereby facilitating visual comparisons. We also computed the
empirical reliability of each model averaged across cases as an estimate of marginal reliability.

As one of the aims of this study is to examine potential gains in reliability from using NLMs
as opposed to their binary counterparts, we computed the reliability gain ∆rxx′ between models by
computing their difference. Similar to the original study and other previous studies [8,15], we used
bootstrapping to obtain a Wald’s z test (based on the bootstrapped standard error) and 95% Confidence
Intervals for the reliability gains.

3. Results

3.1. Binary IRT Models

The model fit indices of all binary models are reported in Table 1. The 2PL, 3PL and 4PL models
all had satisfactory fit, with the 4PL model providing the best fit. The 4PL model fitted significantly
better than the 3PL model (∆χ2 = 167.405, ∆d f = 20, p < 0.001), which fitted significantly better
than the 2PL model (∆χ2 = 519.018, ∆d f = 20, p < 0.001), which fitted significantly better than the
1PL model (∆χ2 = 1100.652, ∆d f = 19, p < 0.001).

Table 1. Model fit of the binary models.

Model χ2 d f p CFI TLI RMSEA AICc

1-Parameter Logistic 2462.597 189 <0.001 0.913 0.913 0.064 58,244.74
2-Parameter Logistic 1069.812 170 <0.001 0.966 0.962 0.042 57,182.90
3-Parameter Logistic 251.3807 150 <0.001 0.996 0.995 0.015 56,705.29
4-Parameter Logistic 196.2342 130 <0.001 0.997 0.996 0.013 56,579.87
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As they were the best two fitting models and provided very similar absolute fit indices, we present
the item characteristic curves of both the 2PL, 3PL and 4PL models respectively in Figures 2–4.
Their similarity and the relatively high low asymptotes for the 4PL model—for the 3PL, they are fixed
to 1—are in line with the fact that the two models provided similar fit.

The parameter estimates (along with standard errors for the 2PL and 3PL) of the 2PL, 3PL, and 4PL
models are presented respectively in Table 2.
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Figure 2. Item characteristic curve plots of the 2-Parameter Logistic Model.
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Figure 3. Item characteristic curve plots of the 3-Parameter Logistic Model.
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Figure 4. Item characteristic curve plots of the 4-Parameter Logistic Model.

The marginal estimates of empirical reliability for all the binary models were satisfactory and
close to the CTT-based estimates earlier reported, as they were 0.833 for the 1PL model, 0.849 for the
2PL model, 0.868 for the 3PL model and 0.873 for the 4PL model.

Table 2. Item parameters of binary logistic models.

1PL Model 2PL Model 3PL Model 4PL Model
Item

βi αi βi αi βi logit(γi) αi βi logit(γi) logit(δi)

Item 1
Estimate 2.783 1.527 2.930 1.417 2.855 −4.089 1.821 3.391 0.002 0.988
Standard error 0.072 0.105 0.113 0.104 0.157 6.671

Item 2
Estimate 2.569 1.391 2.605 1.326 2.575 −5.002 1.999 2.898 0.266 0.979
Standard error 0.068 0.094 0.096 0.087 0.104 6.298

Item 3
Estimate 1.513 1.767 1.740 1.735 1.633 −3.170 2.558 1.988 0.161 0.969
Standard error 0.055 0.093 0.078 0.155 0.136 2.191

Item 4
Estimate 1.454 0.640 1.198 0.619 1.185 -5.598 1.697 2.979 0.002 0.844
Standard error 0.055 0.054 0.048 0.051 0.057 6.083

Item 5
Estimate 1.291 2.543 1.878 2.462 1.719 −3.465 3.222 2.097 0.080 0.982
Standard error 0.053 0.132 0.099 0.179 0.102 1.223

Item 6
Estimate 1.475 1.442 1.535 1.362 1.477 −4.939 2.028 1.880 0.125 0.952
Standard error 0.055 0.078 0.067 0.083 0.089 6.479

Item 7
Estimate 1.588 2.015 1.966 1.891 1.884 −6.457 2.667 2.501 0.045 0.969
Standard error 0.056 0.106 0.089 0.097 0.084 6.179

Item 8
Estimate 1.404 1.412 1.448 1.389 1.365 −3.355 2.415 1.622 0.240 0.951
Standard error 0.054 0.077 0.064 0.141 0.178 3.531

Item 9
Estimate 1.542 2.575 2.245 2.593 2.061 −2.619 3.540 2.450 0.148 0.987
Standard error 0.055 0.138 0.111 0.216 0.118 0.751

Item 10
Estimate −0.372 1.085 −0.335 1.438 −0.852 −2.002 1.683 −0.669 0.131 0.898
Standard error 0.050 0.059 0.046 0.149 0.172 0.285
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Table 2. Cont.

1PL Model 2PL Model 3PL Model 4PL Model
Item

βi αi βi αi βi logit(γi) αi βi logit(γi) logit(δi)

Item 11
Estimate −1.137 0.878 −0.991 2.603 −3.188 −1.597 3.013 -3.462 0.176 0.934
Standard error 0.052 0.055 0.048 0.327 0.400 0.093

Item 12
Estimate 0.762 2.078 0.991 2.440 0.697 −2.171 3.235 0.976 0.133 0.969
Standard error 0.051 0.101 0.070 0.177 0.099 0.276

Item 13
Estimate −0.313 1.612 −0.316 1.577 −0.368 −7.978 1.988 0.021 0.001 0.876
Standard error 0.049 0.079 0.054 0.076 0.055 6.064

Item 14
Estimate −0.662 2.121 −0.802 2.191 −0.992 −4.072 5.037 −1.078 0.049 0.831
Standard error 0.050 0.105 0.067 0.146 0.106 0.616

Item 15
Estimate −1.926 1.113 −1.807 4.520 −5.921 −2.352 6.060 −7.593 0.090 0.934
Standard error 0.059 0.068 0.066 0.608 0.762 0.090

Item 16
Estimate −1.186 0.981 −1.064 5.056 −5.569 −1.622 11.675 −11.750 0.169 0.923
Standard error 0.053 0.058 0.051 0.754 0.841 0.071

Item 17
Estimate −1.399 1.153 −1.321 2.815 −3.228 −2.099 16.917 −14.883 0.132 0.787
Standard error 0.054 0.065 0.057 0.311 0.353 0.111

Item 18
Estimate −1.192 1.736 −1.330 2.104 −1.729 −3.465 2.079 −1.636 0.028 0.983
Standard error 0.053 0.089 0.068 0.156 0.143 0.343

Item 19
Estimate −1.603 0.678 −1.335 3.085 −4.858 −1.673 2.931 −4.739 0.158 0.998
Standard error 0.056 0.054 0.050 0.520 0.759 0.077

Item 20
Estimate −1.808 0.532 −1.463 2.248 −4.156 −1.817 2.369 −4.404 0.143 0.990
Standard error 0.058 0.053 0.050 0.372 0.580 0.089

3.2. Nominal Models

The model fit indices of all nominal models are reported in Table 3. Although the Nominal
Response model provided a borderline acceptable fit, it was, as hypothesized, outperformed by all the
NLMs, which all presented satisfactory fit. The 4PNL model fitted significantly better than the 3PNL
model (∆χ2 = 82.624, ∆d f = 20, p < 0.001), which fitted significantly better than the 2PNL model
(∆χ2 = 541.102, ∆d f = 20, p < 0.001).

The item category curve plots of the 2PNL, 3PNL and the 4PNL are respectively presented in
Figures 5–7. Their model estimates as well as standard errors are presented respectively in Tables 4–6.

Table 3. Model fit of the nominal and nested logit models.

Model χ2 d f p CFI TLI RMSEA AICc

Nominal Response 178.0345 90 <0.001 0.972 0.941 0.018 134,347.1
2-Parameter Nested Logit 177.3853 90 <0.001 0.978 0.958 0.018 133,725.8
3-Parameter Nested Logit 126.1003 70 <0.001 0.986 0.965 0.016 133,231.1
4-Parameter Nested Logit 104.8853 50 <0.001 0.986 0.952 0.019 133,195.5

Table 4. Item parameters of the 2PNL model.

Correct Response Distractors
Item

αi βi λi,1 λi,2 λi,3 λi,4 δi,1 δi,2 δi,3 δi,4

Item 1
Estimate 1.549 2.954 0.426 1.067 0.744 1.327 −0.312 2.878 1.248 1.771
Standard error 0.103 0.113 0.535 0.341 0.383 0.382 0.805 0.523 0.579 0.554

Item 2
Estimate 1.397 2.614 −1.189 −0.297 −0.123 −0.442 −3.219 −1.154 −1.509 −1.669
Standard error 0.091 0.096 0.357 0.194 0.229 0.231 0.548 0.235 0.266 0.292
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Table 4. Cont.

Correct Response Distractors
Item

αi βi λi,1 λi,2 λi,3 λi,4 δi,1 δi,2 δi,3 δi,4

Item 3
Estimate 1.747 1.736 −0.915 −0.392 −0.914 −0.559 −1.147 −1.094 −1.369 −0.593
Standard error 0.089 0.077 0.183 0.193 0.195 0.163 0.205 0.197 0.222 0.167

Item 4
Estimate 0.646 1.200 0.828 2.623 2.413 0.132 2.746 6.883 4.011 0.168
Standard error 0.053 0.048 0.650 0.646 0.671 0.821 1.150 1.122 1.136 1.476

Item 5
Estimate 2.417 1.819 0.648 0.180 0.386 −0.077 1.893 0.351 1.343 −0.259
Standard error 0.119 0.093 0.215 0.255 0.221 0.279 0.260 0.313 0.270 0.355

Item 6
Estimate 1.412 1.524 −1.426 −1.127 −1.334 −1.266 −2.516 −2.816 −2.308 −2.755
Standard error 0.075 0.066 0.205 0.244 0.194 0.231 0.245 0.283 0.226 0.274

Item 7
Estimate 1.945 1.933 −0.373 −0.506 −1.447 −1.262 −0.445 −0.617 −1.647 −1.845
Standard error 0.098 0.085 0.171 0.179 0.218 0.237 0.171 0.184 0.267 0.291

Item 8
Estimate 1.425 1.457 −0.868 −0.485 −0.010 −1.611 0.098 −0.573 0.507 −2.450
Standard error 0.075 0.064 0.163 0.194 0.153 0.288 0.161 0.189 0.136 0.384

Item 9
Estimate 2.435 2.170 0.354 0.517 0.485 0.233 1.225 0.780 0.208 1.577
Standard error 0.123 0.103 0.244 0.270 0.307 0.230 0.303 0.325 0.365 0.291

Item 10
Estimate 1.090 −0.336 0.327 0.472 0.248 1.177 0.701 0.359 −0.068 2.060
Standard error 0.058 0.046 0.131 0.144 0.155 0.123 0.137 0.145 0.161 0.122

Item 11
Estimate 0.875 −0.991 0.318 −0.397 0.567 −0.116 0.613 0.501 0.834 0.817
Standard error 0.055 0.048 0.109 0.107 0.107 0.103 0.088 0.093 0.085 0.086

Item 12
Estimate 2.087 0.992 −0.374 −1.895 −0.589 0.182 1.101 −1.492 0.542 1.008
Standard error 0.098 0.069 0.195 0.264 0.206 0.202 0.168 0.306 0.185 0.167

Item 13
Estimate 1.626 −0.321 −0.718 0.558 −0.139 0.922 0.555 1.467 1.580 2.877
Standard error 0.078 0.055 0.216 0.211 0.201 0.196 0.226 0.197 0.197 0.185

Item 14
Estimate 2.096 −0.804 −0.577 −0.696 −0.539 −0.221 −0.613 −1.659 −0.334 0.435
Standard error 0.102 0.067 0.114 0.158 0.107 0.092 0.097 0.147 0.089 0.070

Item 15
Estimate 1.104 −1.803 −0.520 −0.781 −0.564 −0.680 −0.343 0.130 −0.730 −0.432
Standard error 0.067 0.065 0.087 0.078 0.096 0.089 0.067 0.061 0.075 0.070

Item 16
Estimate 0.965 −1.060 −0.187 0.467 0.802 −0.199 1.074 0.209 0.407 −0.445
Standard error 0.057 0.050 0.092 0.113 0.112 0.125 0.076 0.086 0.084 0.106

Item 17
Estimate 1.118 −1.309 0.310 0.512 1.364 0.149 2.761 3.379 1.632 1.423
Standard error 0.064 0.056 0.196 0.193 0.217 0.212 0.189 0.187 0.201 0.204

Item 18
Estimate 1.781 −1.351 0.400 −0.291 0.321 0.097 1.451 0.316 1.619 2.397
Standard error 0.090 0.069 0.156 0.175 0.152 0.144 0.131 0.159 0.129 0.124

Item 19
Estimate 0.675 −1.335 −0.936 −0.235 −0.812 −0.294 −1.112 0.342 −0.935 0.431
Standard error 0.053 0.050 0.110 0.074 0.104 0.073 0.103 0.061 0.094 0.060

Item 20
Estimate 0.533 −1.463 −0.720 0.390 0.318 −0.680 −1.051 0.208 0.541 −0.578
Standard error 0.053 0.050 0.110 0.079 0.074 0.095 0.103 0.064 0.060 0.087

Table 5. Item parameters of the 3PNL model.

Correct Response Distractors
Item

αi βi logit(γi) λi,1 λi,2 λi,3 λi,4 δi,1 δi,2 δi,3 δi,4

Item 1
Estimate 1.443 2.843 −3.065 0.396 0.927 0.668 1.132 −0.323 2.768 1.196 1.623
Standard error 0.125 0.231 4.501 0.474 0.304 0.342 0.343 0.761 0.500 0.552 0.532

Item 2
Estimate 1.319 2.564 −4.277 −1.109 −0.271 −0.132 −0.452 −3.220 −1.141 −1.522 −1.709
Standard error 0.086 0.111 4.167 0.323 0.174 0.207 0.209 0.540 0.226 0.259 0.288
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Table 5. Cont.

Correct Response Distractors
Item

αi βi logit(γi) λi,1 λi,2 λi,3 λi,4 δi,1 δi,2 δi,3 δi,4

Item 3
Estimate 1.719 1.608 −2.921 −0.824 −0.424 −0.883 −0.496 −1.086 −1.130 −1.378 −0.549
Standard error 0.149 0.131 1.645 0.164 0.176 0.177 0.146 0.194 0.193 0.216 0.158

Item 4
Estimate 0.625 1.181 −4.813 0.684 2.387 2.171 −0.076 2.602 6.763 3.888 −0.230
Standard error 0.051 0.065 4.023 0.588 0.581 0.606 0.769 1.136 1.100 1.115 1.535

Item 5
Estimate 2.340 1.664 −3.412 0.536 0.127 0.300 −0.207 1.795 0.298 1.263 −0.421
Standard error 0.168 0.098 1.215 0.191 0.227 0.197 0.252 0.242 0.293 0.252 0.343

Item 6
Estimate 1.363 1.418 −3.134 −1.265 −0.982 −1.262 −1.159 −2.399 −2.706 −2.295 −2.695
Standard error 0.125 0.158 2.550 0.183 0.217 0.176 0.208 0.230 0.264 0.220 0.263

Item 7
Estimate 1.826 1.854 −6.090 −0.338 −0.431 −1.327 −1.119 −0.425 −0.565 −1.599 −1.751
Standard error 0.090 0.081 4.208 0.155 0.160 0.197 0.213 0.165 0.174 0.259 0.278

Item 8
Estimate 1.378 1.394 −4.012 −0.752 −0.427 −0.002 −1.495 0.168 −0.543 0.512 −2.442
Standard error 0.103 0.123 4.313 0.147 0.176 0.141 0.263 0.154 0.183 0.133 0.381

Item 9
Estimate 2.648 1.969 −2.061 0.408 0.533 0.422 0.297 1.305 0.828 0.176 1.664
Standard error 0.200 0.116 0.370 0.225 0.249 0.285 0.212 0.298 0.320 0.364 0.286

Item 10
Estimate 1.461 −0.870 −1.983 0.317 0.456 0.250 1.137 0.701 0.356 −0.061 2.034
Standard error 0.152 0.172 0.274 0.119 0.132 0.141 0.113 0.133 0.141 0.156 0.118

Item 11
Estimate 2.527 −3.084 −1.619 0.279 −0.374 0.581 −0.113 0.605 0.515 0.824 0.819
Standard error 0.315 0.385 0.096 0.106 0.102 0.106 0.099 0.087 0.092 0.085 0.085

Item 12
Estimate 2.308 0.758 −2.504 −0.344 −1.748 −0.542 0.148 1.120 −1.412 0.573 0.990
Standard error 0.159 0.093 0.359 0.180 0.243 0.191 0.188 0.162 0.296 0.178 0.161

Item 13
Estimate 1.593 −0.374 −7.481 −0.630 0.525 −0.116 0.852 0.615 1.446 1.596 2.837
Standard error 0.075 0.055 3.982 0.194 0.191 0.181 0.177 0.216 0.189 0.189 0.177

Item 14
Estimate 2.249 −1.038 −3.833 −0.510 −0.646 −0.473 −0.183 −0.576 −1.635 −0.297 0.452
Standard error 0.142 0.102 0.434 0.104 0.144 0.098 0.085 0.094 0.143 0.086 0.069

Item 15
Estimate 4.703 −6.146 −2.335 −0.596 −0.800 −0.590 −0.707 −0.344 0.144 −0.721 −0.422
Standard error 0.663 0.831 0.089 0.088 0.079 0.097 0.089 0.067 0.061 0.075 0.070

Item 16
Estimate 4.626 −5.091 −1.638 −0.152 0.446 0.824 −0.214 1.089 0.205 0.404 −0.452
Standard error 0.608 0.675 0.072 0.088 0.112 0.115 0.118 0.075 0.086 0.084 0.105

Item 17
Estimate 2.613 −3.013 −2.142 0.328 0.520 1.452 0.162 2.774 3.387 1.618 1.434
Standard error 0.277 0.313 0.117 0.182 0.180 0.211 0.198 0.188 0.186 0.201 0.202

Item 18
Estimate 2.210 −1.798 −3.415 0.377 −0.242 0.321 0.122 1.444 0.342 1.618 2.407
Standard error 0.159 0.143 0.300 0.144 0.160 0.141 0.133 0.129 0.156 0.127 0.122

Item 19
Estimate 3.167 −4.950 −1.672 −0.901 −0.241 −0.773 −0.300 −1.090 0.344 −0.911 0.434
Standard error 0.523 0.760 0.076 0.104 0.076 0.100 0.074 0.101 0.061 0.092 0.060

Item 20
Estimate 2.233 −4.111 −1.827 −0.659 0.381 0.315 −0.628 −1.018 0.205 0.537 −0.551
Standard error 0.357 0.552 0.089 0.102 0.079 0.073 0.089 0.100 0.064 0.060 0.084

Table 6. Item parameters of the 4PNL model.

Correct Response Distractors
Item

αi βi logit(γi) logit(δi) λi,1 λi,2 λi,3 λi,4 δi,1 δi,2 δi,3 δi,4

Item 1
Estimate 2.447 3.234 0.395 0.983 0.413 0.955 0.677 1.174 −0.314 2.778 1.189 1.640

Item 2
Estimate 1.733 2.875 0.149 0.983 −1.077 −0.283 −0.142 −0.448 −3.143 −1.150 −1.530 −1.697

Item 3
Estimate 2.364 1.832 0.168 0.975 −0.801 −0.428 −0.904 −0.482 −1.052 −1.132 −1.392 −0.534

Item 4
Estimate 1.517 2.702 0.016 0.852 0.690 2.391 2.175 0.049 2.619 6.790 3.913 0.015

Item 5
Estimate 2.474 1.897 0.001 0.990 0.500 0.121 0.258 −0.309 1.749 0.288 1.212 −0.542

Item 6
Estimate 2.063 1.698 0.192 0.956 −1.277 −1.048 −1.307 −1.155 −2.392 −2.766 −2.329 −2.673
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Table 6. Cont.

Correct Response Distractors
Item

αi βi logit(γi) logit(δi) λi,1 λi,2 λi,3 λi,4 δi,1 δi,2 δi,3 δi,4

Item 7
Estimate 2.323 2.377 0.002 0.972 −0.336 −0.421 −1.341 −1.087 −0.424 −0.556 −1.613 −1.706

Item 8
Estimate 2.260 1.575 0.225 0.955 −0.765 −0.426 0.005 −1.551 0.166 −0.539 0.515 −2.474

Item 9
Estimate 3.508 2.443 0.159 0.985 0.447 0.560 0.460 0.325 1.343 0.851 0.212 1.691

Item 10
Estimate 1.357 −0.757 0.104 0.999 0.332 0.473 0.278 1.152 0.711 0.368 −0.041 2.048

Item 11
Estimate 2.444 −3.023 0.165 1.000 0.286 −0.378 0.583 −0.110 0.608 0.512 0.829 0.820

Item 12
Estimate 2.766 0.948 0.098 0.976 −0.327 −1.817 −0.519 0.160 1.131 −1.481 0.590 0.997

Item 13
Estimate 1.576 −0.356 0.000 1.000 −0.640 0.555 −0.096 0.890 0.607 1.466 1.611 2.861

Item 14
Estimate 2.176 −0.980 0.019 1.000 −0.510 −0.661 −0.469 −0.177 −0.579 −1.646 −0.297 0.453

Item 15
Estimate 4.743 −6.281 0.088 1.000 −0.585 −0.799 −0.588 −0.704 −0.348 0.136 −0.727 −0.428

Item 16
Estimate 4.613 −5.115 0.162 1.000 −0.155 0.454 0.830 −0.225 1.087 0.210 0.413 −0.458

Item 17
Estimate 2.496 −2.914 0.104 1.000 0.357 0.555 1.501 0.196 2.792 3.409 1.641 1.454

Item 18
Estimate 2.146 −1.745 0.031 1.000 0.359 −0.264 0.303 0.102 1.437 0.332 1.611 2.398

Item 19
Estimate 3.048 −4.844 0.157 0.998 −0.912 −0.245 −0.784 −0.300 −1.096 0.343 −0.917 0.433

Item 20
Estimate 2.217 −4.113 0.139 0.991 −0.666 0.393 0.319 −0.633 −1.023 0.206 0.540 −0.555
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Figure 5. Item category curve plots of the 2-Parameter Nested Logit (2PNL) model.
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Figure 6. Item category curve plots of the 3-Parameter Nested Logit (3PNL) model.
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Figure 7. Item category curve plots of the 4-Parameter Nested Logit (4PNL) model.

The marginal estimates of empirical reliability for all the nominal models were satisfactory, as they
were 0.857 for the Nominal Response model, 0.867 for the 2PNL model, 0.887 for the 3PNL model and
0.888 for the 4PNL model.



J. Intell. 2019, 7, 17 17 of 22

As hypothesized, preferring NLMs instead of binary logistic models resulted in significant
reliability gains. The average reliability gains amounted to 0.018 (Bootstrapped 95% CI = [0.017, 0.021],
Bootstrapped z = 17.765, p < 0.001) for the 2PL vs. 2PNL models, 0.019 (Bootstrapped 95% CI
= [0.018, 0.023] , Bootstrapped z = 15.265, p < 0.001) for the 3PL vs. 3PNL models, and 0.015
(Bootstrapped 95% CI = [0.011, 0.020] , Bootstrapped z = 6.669, p < 0.001) for the 4PL vs.
4PNL models.

The reliability functions of the 2PL, 3PL and 4PL are reported with their Nested Logit counterparts
in respectively Figures 8–10. As noted by a reviewer, between a binary model and its nested counterpart,
θj is not perfectly invariant, and thus the reliability functions may cross, such as in Figure 4. This was
also previously observed in the comparison between binary and nominal response models [7].
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Figure 8. Comparison of the reliability functions of the 2-Parameter Logistic (2PL) and Nested Logit
(2PNL) models.
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Figure 9. Comparison of the reliability functions of the 3-Parameter Logistic (3PL) and Nested Logit
(3PNL) models.
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Figure 10. Comparison of the reliability functions of the 4-Parameter Logistic (4PL) and Nested Logit
(4PNL) models.

As expected, they show that using NLM provided increments in reliability especially in the lower
range of abilities.

4. Discussion

The aim of the present research was to extend the previous findings of Myszkowski and Storme [8]
to different testing modalities, online assessment—a different context with higher stakes—and personnel
selection, on a larger sample and with a different logical reasoning test.

We found that 4-parameter models—both binary and nested logit—were likely unstable (as their
information matrix could not be inverted) but they seemed to outperform their 1PL, 2PL, and 3PL
counterparts. Being that the 2-parameter and 3-parameter models did not present this issue while still
presenting excellent fit, the results suggest that choosing them may be a more parsimonious but still
well fitting approach to this test. In fact, the 2PL and 2PNL fitting respectively almost as well as the
3PL and 3PNL, they may be a more optimal modeling strategy for this test.

We also found that, as hypothesized, Nested Logit Models (NLM) both outperformed the Nominal
Response Model [7], providing significant reliability gains compared with their binary counterparts.
In addition, the absolute fit of the NLMs—which was not computable in Myszkowski and Storme [8]
due to the lower sample size—could be computed here and was found satisfactory, especially regarding
the models including a guessing parameter (3PNL and 4PNL).

These findings overall suggest that NLMs [9] are a better modeling alternative than binary logistic
models and than the Nominal Response Model [7] for logical reasoning multiple-choice tests, such as
incomplete matrix or series tests, in online personnel selection settings.

4.1. Theoretical and Practical Implications

From a theoretical viewpoint, the present study can be seen as a conceptual replication and
extension of Myszkowski and Storme [8]’s study on Raven’s progressive matrices. Replicating findings
is an important endeavor in scientific research. This is especially true in the field of psychology,
which is regularly criticized for its lack of consideration for replicating empirical findings [27].
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Recently, Hüffmeier et al. [10] have designed a theoretical framework to conceptualize the replication
process in psychology and have proposed a typology of replication studies. Rather than considering
replication as a process separate from the initial research process, they conceptualize replication as the
very research process by which fundamental findings are generalized to situations that are increasingly
close to real life conditions.

When a result has been shown at a fundamental level, it may be interesting to replicate it to
see if it is not due to chance. In this case, exact or close replications will be used [10]. To be able
to further generalize the findings of a fundamental study, it is important to be able to perform
conceptual replications in the laboratory or in the field. In conceptual replications, comparability to the
original study is limited to the aspects that are considered theoretically relevant [28,29]. Among the
conceptual replications are field studies. The aim of such studies is to investigate whether laboratory
findings also hold under field conditions, and to rule out the possibility that a laboratory finding is
a laboratory artifact or too weak to be relevant in contexts that are less tightly controlled [10]. In the
framework described by Hüffmeier et al. [10], our study can be defined as a conceptual replication
in the field of the study conducted by Myszkowski and Storme [8]. Our findings suggest that the
characteristics of the e-assessment context do not fundamentally affect the way distractors are selected
by test takers. Previous basic research on recovering distractor information is therefore relevant in an
e-assessment context.

From a practical viewpoint, our findings suggest that one way to improve the accuracy of
e-assessment in the context of recruitment is to recover distractor information. Web applications
that use tests with distractors should try to implement NLM to get more reliable estimates of
the general mental ability of job applicants. To this day, there are few software implementations
of NLM. A recommendation to designers of IRT platforms would be to add NLM to their offer.
For e-assessment platforms, a relatively inexpensive alternative to commercial IRT software could be
to use the “mirt” [23] R library on the server side to estimate the ability of test takers using the built-in
NLM function. One of the challenges of this option is that R can be a programming language that is
relatively consuming in terms of computing resources and time, although θj estimations in “mirt” are
relatively fast once the parameters of the model are stored in memory. More optimizations that will
facilitate the implementation of NLM in e-assessment might come in the future.

In line with the findings of Myszkowski and Storme [8], the observed gain in reliability was especially
visible at relatively low levels of ability. This is not surprising as NLM recover information from wrong
response options. Recruiters are usually interested in applicants with high levels of intelligence, but this is
not always the case. For example, it is possible that due to high competition on the job market, a recruiter
is unable to attract the best applicants, and has to select among applicants with relatively lower levels of
ability. In such situations, the use of NLM could be highly valuable as it allows forming a more accurate
impression of applicants on the low end of the trait, and selecting the best.

As a reviewer pointed out, the standard errors of item parameter estimates of the Nested Logit
Models were overall smaller than their binary counterparts—this of course only concerns parameters
that are common between models (difficulty, discrimination and, for the 3PL and 3PNL, guessing).
This result may seem counterintuitive, because, in general, for a given dataset, item parameter standard
errors tend to increase as model complexity increases, and the Nested Logit Models are substantially
more parametrized than the binary models. However, it should be noted that the Nested Logit
Models are not only more complex, but they also use, to some extent, a different dataset, in that they
use more information from the base dataset. Indeed, they use the complete information from the
nominal level, while binary models use only the information at the binary level. Although we have
showed that, like in Myszkowski and Storme [8], Nested Logit Models resulted in gains in reliability
(and thus lower standard errors) for the person estimates, the present results also suggest that the
difficulty, disscrimination and guessing parameters of the Nested Logit Models are estimated with
more accuracy—because they use more information—than the respective item parameters of their
binary counterparts. This result calls for replication in other datasets, contexts and types of tests.
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Throughout the paper, we have mostly emphasized the benefits of using NLM to improve
the accuracy of ability estimates. However, NLM has other potentially interesting applications
beyond improving scoring. For example, Suh and Bolt [30] have described a method relying on
NLM to evaluate how distractors might contribute to Differential Item Functioning (DIF) [30]. It is
indeed possible that distractors function differently across groups, leading to Differential Distractor
Functioning (DDF). DDF can lead in turn to DIF, which is a major problem when using the same test
on different groups. Multigroup NLM could help test designers to improve the diagnosis of the causes
of DIF, and thus to improve their tests. Bolt et al. [31] have suggested another interesting application
of NLM, which is to use NLM as a way to determine whether the ability distinguished by distractors
is the same as the ability underlying the choice of the correct response. Here again, the use of NLM
could help test designers to select items that best reflect the underlying ability.

4.2. Limitations and Future Research

Our study has several limitations which should stimulate and guide further research on the
topic. A first limitation is related to the sample that was used in the study. The sample comes
from a single e-assessment platform and it is therefore difficult to know whether the findings would
generalize to other platforms. It is possible for example that characteristics of the design of Web
applications affect the way distractors are processed by test takers. Previous research has shown
that the experience of users greatly affect the cognitive processes they mobilize when using a Web
application [32]. Applied to our question, it is possible that a bad Web design reduces the motivation of
test takers to process distractors when they fail at identifying the rule governing the logical progression
of the series. Further research is needed to test the generalizability of the findings to other platforms,
but also to other types of GMA tasks.

Antother limitation is related to our sample size. NLM have more parameters than the models to
which they were compared in the current study. Although our sample is larger than the one used in
the original study that we conceptually replicated [8], it is still unclear whether our sample size is large
enough to get reliable parameter estimates. Further research using Monte-Carlo simulations is needed
on the influence of sample size on parameter estimation in NLM, and to provide clear guidelines
regarding the necessary sample size.

In addition, it should be noted that the fact that NLM provided a better fit, like in Myszkowski
and Storme [8]’s study, does not necessarily imply that the cognitive processes engaged in responding
similar tests are necessarily only the 2-step sequence that the NLM are based on—attempting to solve
the task by looking at the stimulus only and then, if the correct answer is not found, examining the
distractors. Indeed, it remains very possible that the actual responding process is less clear and closer to
a back-and-forth between a stimulus-based strategy and a response option comparison-based strategy.
Further, it has been noted that NLM may be further improved by including the possibility that the
guessing strategy (level 2) results in the choice of the correct response. In other words, choosing
the correct response could then be the result or either strategy. Future research might consider this
interesting possibility when such models are available in traditional IRT software.

Another limitation of this study is that it was limited in the breadth of nominal models tested by
their availibility in “mirt.” Although this package provides a large number of popular models, we were
not able to fit some alternatives models, notably Thissen and Steinberg [33]’s Multiple Choice Model
(MCM), which essentially adds to the Nominal Response model a latent state category for examinees
that corresponds to an examinee not knowing—and thus guessing—what the correct response is.
Although the Nominal Response model was here outperformed by the Nested Logit models, it may be
that alternative models like the MCM are better alternatives.

Another important limitation of our study is that we did not test whether the improvement
in reliability translates into an improvement in predictive validity. This is because our study did
not include a measure of job performance. The ability of an assessment tool to predict future job
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performance is crucial in the context of recruitment. Improvements in measurement reliability can
lead to improvements in predictive validity, as reliability is a prerequisite for validity [34].

Whether recovering distractor information actually improves predictive validity in the context of
e-assessment remains to be investigated. The answer to this question could represent an important
contribution to the literature. It has indeed been shown that in situations in which test takers are under
pressure, for example when stakes are high, the predictive validity of GMA tests tends to decrease [35].
Duckworth et al. [35] argued that GMA tests predict various indicators of success in life because when
they are used in low stakes contexts, they essentially measure the motivation of test takers. According
to Duckworth et al. [35], it is because GMA tests taken in the lab measure motivation that they are
found to be positively associated with a broad range of indicators of life success. Although there is
empirical evidence supporting Duckworth et al. [35]’s argument, one can wonder whether using a
more precise strategy to score GMA tests could not ultimately reveal that there is a relation between
GMA and various indicators of achievement. Testing the predictive validity of GMA tests scored with
NLM could therefore have important implications regarding the knowledge of the true relationship
between GMA and achievement in general.
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